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Abstract
This article brings control theory to life. Too often control theory is taught using 
block diagrams with no reference to real life circuitry. With the help of some 
math and a circuit simulator, it can be shown that electronic control theory has 
relevance in modern electronic circuit design.

Introduction
Many subjects are taught in university that solicit the response from the student: 
“Will this get me a job?” Control theory might well be one of those subjects with 
no immediate use for pages of math and block diagrams of feedback systems. 
However, control theory teaches the engineer how to design systems that behave 
themselves, how close to the boundaries of stable operation a system is, and how 
to get the best response from any given system. Whether the subject is mechani-
cal, electrical, civil, aeronautical, or communications engineering, if a system is 
not stable, it is of no use in the real world.

To the design engineer, control theory is life itself.

There are many excellent texts written on control theory, but many of them take 
a generalist approach, illustrated by block diagrams. This article is written 
for the electronics engineer and introduces electronic control theory from the 
viewpoint of circuit analysis and simulation. It explains the theory behind general 
second-order systems but illustrates the theory with worked circuit examples. The 
aim is to demystify the basics of second-order systems and explain to anyone try-
ing to learn electronic control theory that it has relevance in analog circuit design.

Second-Order Systems
The most basic second-order network is shown in Figure 1.
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Figure 1. A second-order network consisting of a resistor, an inductor, and a capacitor. 

This has a transfer function of
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The denominator of the right hand side of Equation 1 is known as the characteris-
tic polynomial and if we equate the characteristic polynomial to zero, we get the 
characteristic equation. The poles of a system occur when the denominator of its 
transfer function equals zero. By finding the roots of the characteristic equation 
(the values of s that make the characteristic equation equal to zero), we can find 
the poles of the system and hence discover a wealth of information about how 
the system behaves.

The general form of a second-order system transfer function is given by

(2)G(s) = ωn2

s2 + 2ζωns + ωn2 	

where ζ is the damping coefficient and ωn is the circuit’s natural frequency  
(or undamped frequency) of oscillation in radians per second.

Therefore, the general characteristic equation for a second-order system is 
given by:

(3)s2 + 2ζωns + ωn2 = 0 	
Comparing Equation 3 with Equation 1, we can see that the circuit in Figure 1  
has a natural frequency represented by:

(4)1
√LC

ωn = 	

We can also see that the resistance in the circuit plays a part in the damping 
coefficient of the network:

R
L (5)2ζωn = 	

so
R
2L (6)ζ = × √LC 	 

so
R
2

C
L (7)ζ = 	
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This is intuitive—if the circuit has no resistance, there is no loss in the network 
(no damping), so if the circuit is stimulated, it will oscillate forever. As resistance 
is increased, the oscillation decays more rapidly.

Figure 2 shows an RLC circuit excited with a 1 V step input with values L = 1 µH 
and C = 1 µF, and resistances of 0 Ω, 100 mΩ, and 500 mΩ. The circuit oscillates 
at a frequency of 159 kHz, as expected. The effect of increased resistance on 
decay is clear.

500 mΩ 100 mΩ 0 Ω

Figure 2. The effect of resistance on damping the oscillation of a network. 

The results of the simulation shown in Figure 2 can be shown mathematically by 
translating from the Laplace domain to the time domain. A unit step input in the 
Laplace domain is represented by

1
s (8) 	

so when a second-order system is stimulated by a unit step input, the  
response becomes

(9)VOUT =
ωn2

(s2 + 2ζωns + ωn2)
1
s × 	

Using partial fraction expansion, Equation 9 can be represented as

(10)VOUT =
s + 2ζωn

(s2 + 2ζωns + ωn2)
1
s – 	

Equation 10 is represented in the Laplace domain.

In the time domain, this translates to

(11)1VOUT = 1 – e–ζωnt [cosωdt + sinωdt]
ζ

√1 – ζ2 	
where

(12)ωd = ωn√1 – ζ2
	

A mathematical derivation of Equation 11 with an inverse Laplace transform is 
shown in Appendix A.

Equation 11 tells us how the circuit in Figure 1 responds to a step input. We can see 
that the waveform has a sinusoidal-like nature and its amplitude is modulated by 
the term e–ζωnt, which decays or grows exponentially depending on whether the 
damping coefficient is positive or negative. As an approximation, we can see that 
the response consists of a sinusoidal part and a cosinusoidal part, but, for low 
damping coefficients, the sinusoidal part is small.

Moreover, we can see that, although the natural frequency of the circuit is ωn, 
the circuit does not oscillate at this frequency but rather a frequency, ωd, that  
is somewhat lower and determined by the damping coefficient, ζ. This frequency 
is known as the damped natural frequency. Nevertheless, the exponential decay 
is dependent on the undamped natural frequency of the circuit, ωn.

The poles of a transfer function are found by determining when the denominator 
of the transfer function is equal to zero, namely:

(13)s2 + 2ζωns + ωn2 = 0 	
This can be solved for s using the quadratic formula:

(14)s =
–b ± √b2 – 4ac

2a
where

a = 1

b = 2ζωn

c = ωn
2

The poles of the system occur when
(15)s = –ζωn ± ωn√ζ2 – 1

If the damping coefficient is less than 1, this creates a negative square root, so 
Equation 15 is better written as

(16)s = –ζωn ± jωn√1 – ζ2

Since we have previously stated that ωd = ωn√(1 – ζ2), Equation 16 can be rewrit-
ten as:

(17)s = –ζωn ± jωd

Here we can see that the poles of the system have a real part (–ζωn) and an 
imaginary part (±jωd).

Equation 17 tells us about the roots of the characteristic equation (the poles  
of the system). How can we relate these poles to the stability of the system?  
We now need to link the poles in the Laplace domain to the stability in the  
time domain.

From Equation 11 and Equation 17, we can make the following observations.

The undamped natural frequency, ωn, determines:

	X The real part of the poles (–ζωn) in the Laplace domain (from Equation 17)

	X The exponential decay in the time domain (e–ζωnt) (from Equation 11)

From this, it is reasonable to assume that the real part of the poles determines 
the exponential decay of the system.

The damped natural frequency, ωd, determines:

	X The imaginary part of the poles (±jωd) in the Laplace domain (from Equation 17)

	X The actual frequency of oscillation 

(cosωdt + sinωdt)
ζ

√1 – ζ2
	 

 
(from Equation 11)

From this, it is reasonable to assume that the imaginary part of the poles deter-
mines the actual frequency of oscillation of the system.

These two assumptions can be represented graphically in an s plane plot, which 
is discussed in the following section.

Stable Systems
Control theory states that a system is stable if the poles lie in the left half of the 
s plane. Figure 3 shows an example of the s plane where the real part is plotted 
on the x-axis and the imaginary part is plotted on the y-axis.
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Figure 3. The s plane showing the stable left-half plane and the unstable right-half plane. 

From Equation 17, we see that the poles lie in the left-half plane if the damping 
coefficient is positive (the real part of Equation 17 is negative). As the damping 
coefficient increases, the poles of Equation 17 move further to the left (further 
inside the left-half s plane).

If Equation 17 is in the Laplace domain, how does this translate in the time domain?

Equation 11 is repeated for convenience:

VOUT = 1 – e–ζωnt [cosωdt + sinωdt]
ζ

√1 – ζ2 (11)  

A positive damping coefficient, ζ, causes an exponentially decaying amplitude 
response (dictated by the term e–ζωnt)—the larger the damping, the quicker the 
decay. An increase in the damping coefficient moves the pole further inside the 
left-half s plane (in the Laplace domain), which increases the exponential decay in 
the time domain. This can be seen in Figure 2 with the 100 mΩ and 500 mΩ traces 
illustrating the effect of resistance on damping. The 500 mΩ trace features the 
largest damping coefficient in this data, so its exponential decay is pronounced. 
At 0 Ω, the damping coefficient is zero, where the poles lie exactly along the y-axis 
and the circuit oscillates indefinitely, as seen in the green trace in Figure 2.

It is worth noting that, although a system is stable, it is not necessarily without 
any oscillation. The circuit might be oscillatory with poles in the left-half plane, 
but the amplitude of these oscillations decay over time, as seen in Figure 2.

What does this mean for the circuit in Figure 1?

We know that the damping of Figure 1 is given by
R
2

C
L (18)ζ = × 	

And its natural frequency is given by

(19)1
√LC

ωn = 	

Therefore, with L = 1 µH and C = 1 µF, the natural frequency is 1 Mrads–1 (= 159.1 kHz) 
and the damping coefficient is 0.25 for R = 500 mΩ.

Therefore, the damped oscillation frequency, ωd, is given by

(20)ωd = 1 × 106 √1 – 0.0625 	
So, the damped oscillation frequency is 968 krads–1, which is 154 kHz. This is 
illustrated by looking at the frequency of the red waveform in Figure 4.

500 mΩ 100 mΩ 0 Ω Critically Damped

Figure 4. The effect of damping on the amplitude and frequency of an RLC circuit. 

The amplitude of the sine wave decays by e–ζωnt. With a damping coefficient of 
0.25, a natural frequency, ωn, of 1 Mrads–1, and a damped natural frequency of 
968246 rads–1, Equation 11 becomes

(21)VOUT = 1 – e–250000t[cos968246t + 0.258 × sin968246t] 	
Using this formula, VOUT calculates to 1.44 V at 3.26 μs and 1.09 V at 9.75 μs, 
identical to the readings that can be seen in Figure 4.

Figure 4 clearly shows the effect of increasing the damping coefficient. Both the 
amplitude and the damped natural frequency reduce.

What happens if we keep increasing the damping coefficient?

We know that the damped natural frequency is given by
(22)ωd = ωn√1 – ζ2 	

We can see that if the damping coefficient is increased to unity, the damped 
natural frequency reduces to zero. This is known as the point of critical damping, 
where all oscillation in the circuit stops. This can also be seen in Equation 11. Since 
the damped natural frequency, ωd, has reduced to zero, the sine term equates to 
zero, the cosine term equates to unity, and the expression simplifies to a first-
order system—similar to a capacitor charging through a resistor.

(23)VOUT = 1 – e–ωnt 	
This can be seen in the critically damped trace in Figure 4.

Unstable Systems
Since all circuits possess resistance, many electronic control circuits are inher-
ently stable with poles lying in the left-half plane. However, from Equation 11, 
a negative damping coefficient causes an exponentially growing amplitude 
response, so poles lying in the right-half plane cause instability. With circuit simula-
tion, it is easy to see the effect of a right-half plane pole by inserting a negative 
resistance. Figure 5 shows an RLC circuit, but where the resistance is negative.

In
Out

C1
1 µFV1

PWL (0 0 1n 1)
.tran 0 50u 0 1n

L1R1

1 µH–0.2 Ω

Figure 5. RLC circuit with negative resistance. 
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In this circuit, the damping coefficient is –0.1. Figure 6 shows its response to a 
step input.

Figure 6. The step response of a second-order system with negative damping. 

The damped natural frequency is still dictated by

ωd = ωn√1 – ζ2 	
And, for a damping coefficient of –0.1, the actual frequency of oscillation is 
994987 rads–1 (158.3 kHz).

Again, from Equation 11, the response of our circuit is dictated by

(24)VOUT = 1 – e100000t[cos994987t – 0.1 × sin994987t] 	
We can work out the amplitude response as the output grows: VOUT calculates to 
61.62 V at 41.05 μs and to 114.99 V at 47.36 μs, which is identical to the readings 
shown in Figure 6.

Dominant Poles
Sometimes a system consists of many poles, making analysis complicated. 
However, if the poles are spaced sufficiently apart, the effect of one pole often 
dominates the others and the system can be simplified by ignoring the non-
dominant poles.

The top half of Figure 7 shows two RLC circuits, each with identical L and C 
components; only the resistance has been changed. The circuit with the lower 
resistance has its pole closer to the imaginary axis in the s plane.

The bottom half of Figure 7 shows these two circuits in series. V(OUT3) has been 
replicated using a behavioral voltage source, B1, to avoid it being loaded with R4, 
L4, and C4 so we can see the true response of V(OUT3) × V(OUT4).

Figure 8. The effect of a dominant pole on system response with two waveforms added or 
multiplied. 

We can see their responses in Figure 8. Unsurprisingly, the circuit with the larg-
est resistance has the largest damping coefficient, hence its oscillation decays 
the quickest, as seen in the plot of V(OUT2). However, we notice that when both 
outputs are either added (putting the circuits in parallel), or multiplied (putting 
the circuits in series), V(OUT1) dominates the response. Therefore, one way to 
simplify a complex system is to focus on the circuit that has poles closer to the 
jω axis, which tends to dominate the system response.

Out4

C4
1 µFB1

V = V(OUT3)
.tran 0 50u 0 1n

L4R4

1 µH1 Ω

Out2

C2
1 µF

L2R2

1 µH1 Ω

Out3

C3
1 µF

L3R3

1 µH0.1 Ω

Out1

C1
1 µF

L1R1

1 µH0.1 Ω

In

V1

PWL (0 0 1n 1)

Figure 7. The effect of dominant pole location on series and parallel circuits. 
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Systems with Poles in Both Left- and Right- 
Half Planes
We have considered systems with poles in either the left- or the right-half plane. 
What happens if the system has poles in both the left- and right-half planes? 
Which one wins the battle for stability and why?

Referring again to Equation 11, it is the exponent that determines if the system 
is stable. We can ignore the sinusoidal part of Equation 11 and just look at the 
exponents to see what happens if we combine a left-half pole with a right-half 
pole. Figure 9 shows a simple circuit to demonstrate this.

In
Out1

C1
1 µF

Out2

C2
1 µF

V1

PWL (0 0 1n 1)

.tran 5 m

R1

1 kΩ

R2

–1 kΩ

Figure 9. A circuit with poles in both the left- and right-half planes. 

The RC circuit at the top clearly has a left-half pole since its resistance is posi-
tive. The circuit at the bottom has a right-half pole. A mathematical derivation  
of this is shown in Appendix B.

The response of the circuit in Figure 9 is shown in Figure 10.

Figure 10. The response to a step input of an RC circuit with positive and negative resistance. 

The top waveform settles to a zero gradient after about 5 ms, matching the gen-
erally accepted rule that an RC circuit will settle in about five time constants. In 
contrast, V(OUT2) shows an ever-increasing gradient. It should now be apparent 
that if a circuit with a left-half plane pole is connected in series with a circuit 
with a right-half plane pole, then the complete circuit will be unstable since the 
right-half plane response continues to exponentially increase long after the 
left-half plane circuit has settled. So, for a circuit to be stable, all poles must lie 
in the left-half plane.

Conclusion
This article connects the theoretical models used in electronic control theory 
with the practical world of the electronics engineer. Control systems are 
stable if all poles lie in the left-half plane due to the resistance (or damping) 
present in the system. Practically demonstrating the response of a system 
with a right-half plane pole can prove problematic since it requires modeling 
a negative resistance. However, computer simulation comes to the rescue, 
enabling us to demonstrate stable and unstable circuits by simply changing 
the polarity of the resistance.

Likewise, Laplace transforms rarely manage to break out of the classroom, 
but here they have proved invaluable in proving how second-order electronic 
systems work.

https://www.analog.com
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Appendix A
Showing that

(A1)
VOUT = is equivalent to

ωn2

(s2 + 2ζωns + ωn2)
1
s ×

1 – e–ζωnt (cosωdt + sin ωdt)
ζ

√1 – ζ2

	

The Laplace transform of a unit step input is

(A2)1
s

The general transfer function of a second-order low-pass filter is given by

(A3)ωn2

s2 + 2ζωns + ωn2

So the response of a second-order system stimulated by a unit step is given by

(A4)
ωn2

(s2 + 2ζωns + ωn2)
1
s ×

A standard partial fraction expansion exists and is given by

= (A5)px2 + qx + r
(x – a)(x2 + bx + c)

A
(x – a) + Bx + C

(x2 + bx + c)
Replacing x with s gives

= (A6)ps2 + qs + r
(s – a)(s2 + bs + c)

A
(s – a) + Bs + C

(s2 + bs + c)
In A4 there is no s or s2 term in the numerator. Also, there is no a term in  
the denominator.

So Equation A6 can be rewritten as

= (A7)r
(s)(s2 + bs + c)

A
s + Bs + C

(s2 + bs + c)
So

= (A8)ωn2

(s)(s2 + 2ζωns + ωn2)
A

(s) + Bs + C
(s2 + 2ζωns + ωn2)

To ensure both sides of Equation A8 have the same denominator, it can be 
rewritten as

= (A9)ωn2

(s)(s2 + 2ζωns + ωn2)
A(s2 + 2ζωns + ωn2) + (Bs + C)s

(s)(s2 + 2ζωns + ωn2)
As a check, the right hand side of Equation A9 can be compared with the right 
hand side of Equation A8:

A
s

+

+

=

(A10)

A(s2 + 2ζωns + ωn2)
(s)(s2 + 2ζωns + ωn2)

(Bs + C)(s)
(s)(s2 + 2ζωns + ωn2)

Bs + C
(s2 + 2ζωns + ωn2)

	

We can now equate the numerators of Equation A9 to find A, B, and C:
(A11)ωn2 = A(s2 + 2ζωns + ωn2) + (Bs + C)s 

Equating coefficients of s2:

0 = A + B

Equating coefficients of s1:

0 = A(2ζωn) + C

Equating coefficients of s0:

ωn
2 = Aωn

2

So A = 1, B = –1, C = –2ζωn

Therefore, from Equation A8

= – (A12)1
s

ωn2

s2 + 2ζωns + ωn2
s2 + 2ζωn

(s2 + 2ζωns + ωn2)
1
s ×

(note the change in sign because B and C are negative)

There are three transforms from the time domain (on the left) to the Laplace 
domain (on the right):

eatsinbt = (A13)
b

(s – a)2 + b2

eatcosbt = 
(s – a)

(s – a)2 + b2

1
s1 = 	

 
By completing the square, we can write Equation A12 as

= – (A14)1
s

s + 2ζωn
(s2 + 2ζωns + ωn2)

s + 2ζωn
(s + ζωn)2 – ζ2ωn2 + ωn2

1
s – 	

Which equals

(A15)
s + 2ζωn

(s + ζωn)2 + ωn2(1 –  ζ2)
1
s – 	

We now need to make the numerator equal to (s + ζωn) so it matches the first 
term in the denominator enabling us to use the Laplace identity:

(A16)eatcosbt = 
(s – a)

(s – a)2 + b2 	

So, by separating out ζωn into its own fraction, Equation A14 equals

+ (A17)
s + ζωn

(s + ζωn)2 + ωn2(1 –  ζ2)
ζωn

(s + ζωn)2 + ωn2(1 –  ζ2)
1
s – 	

(So a = –ζωn and b = ωn√(1 – ζ2))

We now need to make the numerator of the third term of Equation A17 equal  
to ωn√(1 – ζ2) so it matches the denominator and enables us to use the 
Laplace identity:

(A18)eatsinbt = 
b

(s – a)2 + b2 	

Dividing the third term of Equation A17 by ωn√(1 – ζ2), we can then put ωn√(1 – ζ2)
on the numerator.

So the whole expression can be rewritten as

+ ×
(A19)

s + ζωn
(s + ζωn)2 + ωn2(1 –  ζ2)

(s + ζωn)2 + ωn2(1 –  ζ2)

ζωn1
s –

ωn√(1 – ζ2)
ωn√(1 – ζ2)

	

So a = –ζωn and b = ωn√(1 – ζ2)

Equation A19 can now be translated out of the Laplace domain as

(A20)

ζωn
ωn√(1 – ζ2)

1 –   e–ζωntcosωn√(1 – ζ2)t + 

{e–ζωntsinωn√(1 – ζ2)t}

	

The two wn’s cancel in the third term. Since the damped natural frequency, ωd, 
can be written as

(A21)ωd = ωn√(1 – ζ2) 	
Equation A20 can be simplified to read

(A22)1 – e–ζωnt(cosωdt + sinωdt)
ζ

√1 – ζ2 	
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Many textbooks state that the Equation A22 polynomial can also be written as

√1 – ζ2

(A23)1 – 

Where ß = and θ = tan–1

e–ζωntsin(ßωnt + θ)1
ß

ß
ζ

	

So we have a decaying exponential that is dependent on the damping coef-
ficient and the undamped natural frequency and an oscillation dependent on the 
damped natural frequency.

Equation A23 can be entered into a spreadsheet and a graph plotted of the 
output in response to a step input.

Appendix B
Showing that

is equivalent to 1 – e (B1)
1

1 + sCR
1
s ×

–t
CR 	

The Laplace transform of a unit step input is

(B2)1
s 	

The general transfer function of an RC circuit is given by

(B3)VOUT
VIN

1
1 + sCR= 	

The denominator is equal to zero for negative values of s, therefore, for this cir-
cuit, the poles lie in the left-half plane, so the system is stable. If the resistance 
was negative, the poles would lie in the right-half plane and the system would  
be unstable.

From Equation B3, we can see that an RC circuit’s transfer function in response 
to a step input is given by

(B4)VOUT
VIN

1
1 + sCR= =1

s
1

s(1 + sCR)× 	

A standard partial fraction expansion exists and is given by

(B5)A
(x + a)= +1

(x + a)(x + b)
B

(x + b) 	

In this case, a = 0

so

(B6)A
(s)= =+1

(s)(1 + sCR)
B

(1 + sCR)
A(1 + sCR) + Bs

s(1 + sCR) 	

Equating terms of s1 in the numerator gives

0 = ACR + B

Equating terms of s0 in the numerator gives

1 = A

So A = 1, B = –CR

So
(B7)1

s= =– –1
s(1 + sCR)

1
s

CR
(1 + sCR)

1
1

CR + s

There are two transforms from the time domain (on the left) to the Laplace 
domain (on the right):

1
s1 =

(B8)
eat = 

1
(s – a)

	

So translating Equation B7 into the time domains means the RC responds 
according to

1 – e
–t

CR (B9)VOUT
VIN

= 	

as expected.

Addendum
Simulations were conducted in LTspice.

Download the LTspice® files related to this article.

To learn more about LTspice, please visit analog.com/ltspice.
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